17 research outputs found

    Spoofing prevention via RF power profiling in wireless network-on-chip

    Get PDF
    With increasing integration in SoCs, the Network-on-Chip (NoC) connecting of cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits of scaling of electrical wires, especially for long multi-mm distances on-chip, alternate technologies such as Wireless NoC (WNoC) have shown promise. Since WNoCs can provide low-latency one-hop transfers across the entire chip, there has been a recent surge in research demonstrating their performance and energy benefits. However, little to no work has studied the additional security challenges that are unique to WNoCs. In this work, we study the potential threat of spoofing attacks in WNoCs due to malicious hardware trojans. We introduce Veritas, a drop-in solution aimed at detecting and correcting such spoofing attacks. To this end, our solution exploits the static propagation environment of WNoCs to associate each node to a power profile. We demonstrate that, with small area and power overheads, Veritas works well in a variety of settings.Peer ReviewedPostprint (author's final draft

    Understanding the Impact of On-chip Communication on DNN Accelerator Performance

    Full text link
    Deep Neural Networks have flourished at an unprecedented pace in recent years. They have achieved outstanding accuracy in fields such as computer vision, natural language processing, medicine or economics. Specifically, Convolutional Neural Networks (CNN) are particularly suited to object recognition or identification tasks. This, however, comes at a high computational cost, prompting the use of specialized GPU architectures or even ASICs to achieve high speeds and energy efficiency. ASIC accelerators streamline the execution of certain dataflows amenable to CNN computation that imply the constant movement of large amounts of data, thereby turning on-chip communication into a critical function within the accelerator. This paper studies the communication flows within CNN inference accelerators of edge devices, with the aim to justify current and future decisions in the design of the on-chip networks that interconnect their processing elements. Leveraging this analysis, we then qualitatively discuss the potential impact of introducing the novel paradigm of wireless on-chip network in this context.Comment: ICECS201

    Quantifying the latency benefits of near-edge and in-network FPGA acceleration

    Get PDF
    Transmitting data to cloud datacenters in distributed IoT applications introduces significant communication latency, but is often the only feasible solution when source nodes are computationally limited. To address latency concerns, cloudlets, in-network computing, and more capable edge nodes are all being explored as a way of moving processing capability towards the edge of the network. Hardware acceleration using Field Programmable Gate Arrays (FPGAs) is also seeing increased interest due to reduced computation latency and improved efficiency. This paper evaluates the the implications of these offloading approaches using a case study neural network based image classification application, quantifying both the computation and communication latency resulting from different platform choices. We consider communication latency including the ingestion of packets for processing on the target platform, showing that this varies significantly with the choice of platform. We demonstrate that emerging in-network accelerator approaches offer much improved and predictable performance as well as better scaling to support multiple data sources

    Spoofing Prevention via RF Power Profiling in Wireless Network-on-Chip

    No full text
    With increased integration in SoCs, the Network-on-Chip (NoC) connecting of cores provides low-latency and high-throughput communication. Due to limits of scaling of electrical wires, especially for long multi-mm distances on-chip, Wireless NoC (WNoC) have shown promise. Since WNoCs can provide low-latency one-hop transfers across the chip, there has been a recent surge in research demonstrating their benefits. WNoCs provide unique security challenges that have yet been unexplored. We study the potential threat of spoofing attacks in WNoCs due to malicious hardware trojans, and introduce Veritas, a drop-in solution that detects and corrects such spoofing attacks. Exploiting the static propagation environment, Veritas associates a node to a power profile. We demonstrate that, with small area and power overheads, Veritas works across a variety of settings

    Architecting a secure wireless network-on-chip

    No full text
    With increasing integration in SoCs, the Network-on-Chip (NoC) connecting cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits to scaling of electrical wires in terms of energy and delay, especially for long multi-mm distances on-chip, alternate technologies such as Wireless Network-on-Chip (WNoC) have shown promise. WNoCs can provide low-latency one-hop broadcasts across the entire chip and can augment point-to-point multi-hop signaling over traditional wired NoCs. Thus, there has been a recent surge in research demonstrating the performance and energy benefits of WNoCs. However, little to no work has studied the additional security and fault tolerance challenges that are unique to WNoCs. In this work, we study potential threats related to denial-of-service, spoofing, and eavesdropping attacks in WNoCs, due to malicious hardware trojans or faulty wireless components. We introduce Prometheus, a dropin solution inside the network interface that provides protection from all three attacks, while adhering to the strict area, power and latency constraints of on-chip systems.Peer ReviewedPostprint (published version
    corecore